

Internship (5/6 months) at the POEMS laboratory
M2 level in applied mathematics, scientific computing, or mechanics

Lazy -matrix factorisation: shared memory parallelism based
on a dataflow approach

Summary

In this project we will focus on the efficient parallelisation of hierarchical matrix factorisation based on a dataflow
approach. Starting from a lazy and serial algorithm which attempts to minimise the number of allocations, we will
explore how to parallelise it based on a dataflow approach. The main idea is to describe how each basic operation in the
serial algorithm access the underlying data, and create a directed acyclic graph (DAG) to represent the computation. A
simple scheduler can then be run on the DAG to parallelise the algorithm while ensuring sequential consistency.

This project will be carried out in the context of two existing libraries: HMatrices.jl and DataFlowTasks.jl. The
internship will take place at the POEMS laboratory, and will be supervised by Luiz M. Faria (CR INRIA) and Stephanie
Chaillat (DR CNRS).

Motivation and overview

Solving linear systems of the form is a cornerstone of not only numerical linear algebra, but of applied
mathematics in general as most methods rely, on way or another, on finding solutions to linear systems. When is an

 dense matrix, a direct factorisation such as LU is know to cost operations, making such a procedure
impractical for large problems (say). There are, however, several applications whereas despite the denseness
of the underlying matrix, its particular structure is such that lower complexity algorithms are possibly. In this project,
we will focus on the matrices for which a hierarchical low-rank approximation is indeed feasible.

The main idea behind hierarchical matrices is that, after a certain
permutation of rows and columns, the underlying matrix possesses large
blocks which are of low rank. If we let be a rank matrix over
the reals, then it is possible to find a data sparse representation of it such
as , where and , and is the transpose of

. Assuming that , storing the matrix in the
aforementioned outer product format saves storage. Furthermore, the
outer product format also allows for a lower complexity product. The
entire matrix is then represented as a hierarchical data structure, with
certain (small) blocks being simply dense matrices, while other (large)
blocks begin low-rank matrices. Provided enough of such low rank
blocks exist in the underlying matrix, it can then be shown that a large
set of linear algebra operations can be performed in dense matrices of
size with a complexity (and storage) that scales quasi-linearly with

 [1].

Among the possibly algebraic operations that one can perform with a hierarchical matrix, the direct LU factorisation is
a particularly important one in cases where: (i) one is interested in solving for several right hand sides , and/or
the matrix is not well-conditioned. The complex data-structure of hierarchical matrices, together with the need to
preserve the low-rank structure of blocks during the factorisation, makes the parallelisation as well as efficient serial
implementation of the hierarchical LU algorithm a challenging problem [2]. Recently, some effort has been paid to
improve the serial algorithm by grouping certain hierarchical matrix products (see e.g. [3]), but the parallelisation of
such techniques remains unexplored. The principal research direction of this project is to combine a data flow approach
to parallelism [2] with the newer algorithms such as those discussed in [3].

ℋ

A x = b
A

n × n 𝒪(n3)
n ∼ 50000

A

R ∈ ℝp×q k

R = A Bt A ∈ ℝp×r B ∈ ℝq×r Bt

B r ≪ min(p, q) R

n × n
n

A x = b b
A

https://en.wikipedia.org/wiki/Lazy_evaluation
https://en.wikipedia.org/wiki/Sequential_consistency
https://github.com/WaveProp/HMatrices.jl
https://github.com/maltezfaria/DataFlowTasks.jl

Expected outcome
At the end of the internship the student is expected to have fully grasped the main ideas behind hierarchical matrix
factorisation, as well as to develop a better understanding of the various challenges associated with shared memory
parallelism (e.g. race conditions and how to avoid them). In particular, the student should be comfortable with the
classical hierarchical LU factorisation procedure, and understand the main difficulties related to its parallelisation. A
working, even if inefficient, parallel version of the hierarchical lu factorisation is also expected. Finally, the student
should attempt to answer some of the following questions regarding the proposed technique:

(a) Is the lazy approach interesting from a parallelisation point of view?

(b) What are the main bottlenecks in the parallelisation, and how can one improve on them?

(c) Can one theoretically analyse the number of allocations in the classical vs. lazy factorization algorithms for a
constant rank approximation?

The project will (roughly) follow the outline below:

• First, a literature review will be performed in order for the student to become familiar with the basic equations
and algorithms we will study (≈ 1.5 month)

• If the student is not familiar with the Julia programming language, he/she will follow some online tutorials, as
well as perform some basic tasks to better grasp the details of the language (≈ 1 moth, in parallel with the
literature review)

• After becoming familiar with the basic idea of the algorithms and the programming language, the student will
dive into the implementation details of HMatrices.jl and DataFlowTasks.jl. In particular, the student should
understand the main design principles and where the modifications are needed in order to parallalelize the
algorithm (≈ 1.5 months)

• The second half (3 to 6 months) will be devoted to the novel work. In particular:
• Implement a parallel version of the lazy hierarchical matrix factorization
• Analyse the algorithm and characterise both the operations count (flops) as well as the number of

memory allocations (bytes).
• Detect the possible bottlenecks, study the scaling properties, and if time permits compare to alternative

approaches.

Student profile
This project requires familiarity with numerical linear algebra concepts as well as some understanding of how to
analyse the computational complexity of an algorithm (e.g. counting the number of flops) and number of allocations.
Some knowledge of boundary integral equation would be helpful to better understand the main application case, but is
not necessary. Familiarity with a compiled (e.g. C++) as well as an interpreted (e.g. Python) programming language is
necessary. All programming tasks will be performed in Julia, so basic familiarity with the language is a plus, but not
required. Most importantly, the student should be interested and curious about programming, scientific computing,
algorithms, and their efficient implementation.

References:

[1] Bebendorf, M. (2008). Hierarchical matrices.
[2] Lizé B. (2014) Résolution directe rapide pour les éléments finis de frontière en électromagnétisme et acoustique: ℋ-
Matrices. Parallélisme et applications industrielles.
[3] Dölz J, Harbrecht H, Multerer MD (2019). On the best approximation of the hierarchical matrix product.

Contact: luiz.maltez-faria@inria.fr and stephanie.chaillat@ensta-paris.fr

https://github.com/WaveProp/HMatrices.jl/blob/main/src/lu.jl
https://docs.julialang.org/en/v1/
https://github.com/WaveProp/HMatrices.jl
https://github.com/maltezfaria/DataFlowTasks.jl
mailto:luiz.maltez-faria@inria.fr
mailto:stephanie.chaillat@ensta-paris.fr

	Summary
	In this project we will focus on the efficient parallelisation of hierarchical matrix factorisation based on a dataflow approach. Starting from a lazy and serial algorithm which attempts to minimise the number of allocations, we will explore how to parallelise it based on a dataflow approach. The main idea is to describe how each basic operation in the serial algorithm access the underlying data, and create a directed acyclic graph (DAG) to represent the computation. A simple scheduler can then be run on the DAG to parallelise the algorithm while ensuring sequential consistency.
	This project will be carried out in the context of two existing libraries: HMatrices.jl and DataFlowTasks.jl. The internship will take place at the POEMS laboratory, and will be supervised by Luiz M. Faria (CR INRIA) and Stephanie Chaillat (DR CNRS).
	Motivation and overview
	Expected outcome
	At the end of the internship the student is expected to have fully grasped the main ideas behind hierarchical matrix factorisation, as well as to develop a better understanding of the various challenges associated with shared memory parallelism (e.g. race conditions and how to avoid them). In particular, the student should be comfortable with the classical hierarchical LU factorisation procedure, and understand the main difficulties related to its parallelisation. A working, even if inefficient, parallel version of the hierarchical lu factorisation is also expected. Finally, the student should attempt to answer some of the following questions regarding the proposed technique:
	Is the lazy approach interesting from a parallelisation point of view?
	What are the main bottlenecks in the parallelisation, and how can one improve on them?
	Can one theoretically analyse the number of allocations in the classical vs. lazy factorization algorithms for a constant rank approximation?
	The project will (roughly) follow the outline below:
	Student profile
	This project requires familiarity with numerical linear algebra concepts as well as some understanding of how to analyse the computational complexity of an algorithm (e.g. counting the number of flops) and number of allocations. Some knowledge of boundary integral equation would be helpful to better understand the main application case, but is not necessary. Familiarity with a compiled (e.g. C++) as well as an interpreted (e.g. Python) programming language is necessary. All programming tasks will be performed in Julia, so basic familiarity with the language is a plus, but not required. Most importantly, the student should be interested and curious about programming, scientific computing, algorithms, and their efficient implementation.

